
www.manaraa.com

Incorporating Scheme-based Web Programming
in Computer Literacy Courses

Timothy J. Hickey ∗

Department of Computer Science
Brandeis University

Waltham, MA 02254, USA

Abstract

We describe an approach to introducing non-science ma-
jors to computers and computation in part by teach-
ing them to write applets, servlets, and groupware ap-
plications using a dialect of Scheme implemented in
Java. The declarative nature of our approach allows
non-science majors with no programming background to
develop surprisingly complex web applications in about
half a semester. This level of programming provides a
context for a deeper understanding of computation than
is usually feasible in a Computer Literacy course.

1 Introduction

There are two general approaches to teaching a Com-
puter Literacy (CS0) class. The most common approach
is a broad overview of Computer Science including hard-
ware, software, history, ethics, and an exposure to in-
dustry standard office and internet software. On the
other end of the spectrum is the CS0 class that focuses
on programming in some particular general purpose lan-
guage, (e.g. Javascript [9], Scheme[5], MiniJava[8]).

The primary disadvantage of the breadth-first approach
is that it tends to offer a superficial view of computing.
The depth-first programming approach on the other hand
often requires a substantial effort just to learn the syn-
tax of the language and the semantics of the underly-
ing abstract model of computation, leaving little time
to look at other aspects of computing such as internet
technology or computer architecture.

Several authors have recently proposed merging these
two approaches by using a simpler programming lan-
guage (e.g. Scheme[5]) or by using an internet-based
programming language (e.g. Javascript[9], MiniJava[8]).

In this paper we describe a five year experiment in com-
bining these two approaches using a small (but pow-

∗This work was supported by the National Science Founda-
tion under Grant No. EIA-0082393.

erful) subset of Jscheme[2] – a Java-based dialect of
Scheme. The tight integration of Java with Jscheme
allows it to be easily embedded in Java programs and
hence makes it easy for students to implement servlets,
applets, and other web-deliverable applications. Jscheme
is an implementation of Scheme in Java (meeting almost
all of the requirements of the R4RS [4] Scheme stan-
dard). It also includes two simple syntactic extensions:

• javadot notation: this provides full access to
Java classes, methods, and fields

• quasi-string notation: this simplifies the pro-
cess of generating HTML.

The javadot notation provides a transparent access to
Java and the quasi-string notation provides a gentle
path from HTML to Scheme for novices. It also pro-
vides a convenient syntax for generating complex strings
of other sorts (such as SQL queries). These two exten-
sions will be discussed at length below.

Jscheme can be accessed as an interpreter applet (run-
ning on all Java-enabled browsers) or as a Java Network
Launching Protocol (JNLP) application. Both of these
provide one click access to the Jscheme IDE from stan-
dard browsers. It can also be downloaded as a jar file
and run from the command line as a standard read-eval-
print-loop program.

Jscheme has been built into a Jakarta Tomcat webserver
as a webapp which allows students to write servlets
and JNLP applications directly in Jscheme. This web-
server typically runs on the instructor’s machine, but
students can easily download and install the server on
their home/dorm PCs as well.

In the sequel, we explain, in detail, how Jscheme can be
used to teach non-science majors in a large lecture class
how to build fairly sophisticated servlets and applets in
a six week section of a Computer Literacy course. The
approach described here is very similar to the approach
used in the Autumn 2001, “Introduction to Computers”
course at Brandeis University, but it reflects changes
that will be incorporated in the next year’s version of
the course. The course and the underlying language

www.manaraa.com

have been evolving steadily over the past five years and
will likely continue to do so.

This approach to teaching CS0 is feasible only because
of the declarative style of programming that is possible
in Scheme, together with the extremely simple syntax
and semantics of Scheme.

We posit that this web-programming based approach
would work with other declarative languages (e.g. Haskell
or Prolog), but would be infeasible with imperative lan-
guages such as Java or Perl. Scheme however is ideally
suited to this application because of the relative sim-
plicity of its syntax and semantics. Both of which can
be stumbling blocks for novice programmers.

Although the particular languages and techniques that
we use may not be the best match at other institutions,
we feel that the general approach could be easily repli-
cated using other languages provided care is taken to
make the syntax and semantics that must be learned as
simple as possible.

2 Related Work

The need for a simple, but powerful, language for teach-
ing introductory CS courses (CS0 or CS1) has been dis-
cussed recently by Roberts [8] who argues for a new
language, Minijava, that provides both a simpler com-
puting model (e.g. no inner classes, use of wrapper class
for all scalar values, optional exception throwing) and
a simpler runtime environment (e.g. a read-eval-print
loop is provided). Jscheme can be viewed as an even
more radical simplification of Java in that it replaces
the syntax of Java with the syntax of Scheme (matching
parentheses and quotes is the only syntactic restriction)
while maintaining access to all of the classes and objects
of Java.

Another recent approach to CS0 courses is to use Javascript
to both teach programming concepts and to provide a
vehicle for discussing other aspects of computing such
as the internet and web technology. For example, David
Reed proposes teaching a CS0 course [9] in which about
15% of class time is devoted to HTML, 50% to Javascript,
and 35% to other topics in computer science. The Jscheme
approach allows for a similar breakdown but in addition
allows the students to also build servlets, applets, and
GUI-based applications.

A third related approach is to teach Scheme directly as
a first course. The MIT approach, pioneered by Abelson
and Sussman [1], is not suitable for non-science majors
as it requires a mathematically sophisticated audience.

A gentler introduction to Scheme[5] has recently been
proposed as a CS0 course which is appropriate (and
in fact important) for students in all disciplines. This

course has as its goal teaching almost all of the Scheme
language in an introductory course. This leaves little
time is left for other topics (e.g. computer architecture,
chip design, internet programming, ethical and legal is-
sues in computing), but that can be a worthwhile trade-
off.

In the Jscheme approach we provide an introduction to
only a subset of the language (introducing lists only to-
ward the end) and we introduce some high-level declara-
tive libraries for teaching an event-driven model of GUI
construction. Since the Scheme section of the course
requires only about 6 weeks, it leaves the other half of
the course for standard Computer Literacy topics.

3 Role of Programming in CS0

We take a language-based approach to Computer Liter-
acy where each section of the course focuses on one par-
ticular ”layer” of computation and explores that layer
through the predominant language. The students learn
how to use each language to control this level of compu-
tation (although we do not currently have them program
in real assembly language or build real CMOS devices).
A rough outline of the curriculum, which shows the con-
text of the web-programming part of the course is shown
below:

• 1 week HTTP and the structure of the Inter-
net: IP addresses, ports, sockets, services, routers,
gateways. Use of telnet, dig, traceroute, ping,
portscan to illustrate these issues.

• 2 weeks HTML/CSS – the thirty non-style HTML
tags and 10 basic CSS properties. Copyright is-
sues.

• 3 weeks Scheme Servlets – quasi-string nota-
tion, abstraction, conditional execution, lists, file
I/O, email, database access. Security, privacy,
cookies, ethics.

• 3 weeks Scheme Applets/Groupware – GUI
components, layout, callbacks, animation, network-
ing primitives, groupware components. Doctor ap-
plet, Turing Test. Halting problem. Substitution
model. Software licenses.

• 1 week Assembly Language/Pcode - von Neu-
mann architecture, memory-mapped peripherals,
memory, speed, bandwidth, cacheing, super-scalar
architectures. Operating Systems, file systems,
time sharing, ...

• 1 week CMOS/Logic Circuits - semiconductors
(P/N-type), gates, circuits, adders, latches and
bits.

Observe that the course contains a signficant amount of
non-Scheme material that would be found in most typi-
cal Computer Literacy courses (such as copyright issues

www.manaraa.com

and ethical questions dealing with servers), but with
this programming-based approach these issues are more
meaningful as the students are able to write servers that
create logs and must deal with the resulting ethical ques-
tions.

4 Courseware

The main language used in the course is Jscheme1 [2,
3, 6] an open source implementation of Scheme in Java.
It is almost completely compliant with the R4RS stan-
dard 2 [4] and also provides full access to Java using
the Java Reflector syntax shown in Figure 1. Jscheme
also provides full access to Java thread and exception
handling.

The course makes use of a small but powerful subset of
Scheme and also relies on a few selected Java reflectors
and a small GUI-building library. For control flow and
abstraction it uses define, set!, lambda, if, cond,
case, let*. For primitives, it uses arithmetic operators
and comparisons, a simple GUI-building library (pro-
viding declarative access to Swing components, events,
and layout managers).

One fundamental problem with teaching a course in
which students will be asked to write servlets is pro-
viding access to a machine that has that capability. We
have developed a simple Jscheme webapp which plugs
into the open source Jakarta Tomcat web server3 and
allows students to edit and upload their files to this
common server directly from their browser.

After registering for the course, the students visit the
page on the server they want to edit or create and add
a U to the end of the name. The server then gener-
ates a form that allows them to either upload the file
or edit it in a textarea input form. If they supply the
correct password, the file will be uploaded to the server.
The advantage of this approach is that it gives them full
access to their directory (including making subdirecto-
ries), and it requires no tools other than a web browser.

Another useful tool developed for this course is the TATool.
This is a groupware application, written in Jscheme and
delivered as a Java Web Start application or as a jar file.
It provides a simple IDE for scheme development as well
as providing FTP-like services to the course web server.
In addition it allows students to connect with Teaching
Assistants using a IM-like buddylist mechanism. The
TAs can then view the students program (but not edit
it) and both students and TAs can comment on the
program line by line in adjacent textareas. A shared
whiteboard and a standard chatroom are also provided.
The TATool allows each TA to connect to many stu-

1http://silk.sourceforge.net
2strings are not mutable, and call/cc is only implemented for

try/catch like applications
3http://jakarta.tomcat.org

dents (using a tabbed pane with a separate tab for each
student). Each student can also connect to many TAs
(again using the tabbed pane model). Students can ask
each other for help if no TAs are available. This tool
has only been available as an early prototype in the re-
cent CS0 course, but will be fully deployed starting in
Summer 2002.

5 Scheme Servlets

Files which appear in the Jscheme webserver student di-
rectory with the extension sssp are interpreted as Jscheme
expressions which are evaluated to generate the html to
send back to the client. After working with this model
for a while, we found that the need to combine scheme
and text resulted in programs containing large num-
bers of string-append’s and quoted strings (with many
quoted quotes). In response to this somewhat confus-
ing syntax, we introduced a slight syntactic extension
to Scheme which allows curly braces {} to be used in
place of double quotes for strings. Moreover, inside a {}
string, any scheme expressions appearing within square
brackets [], are evaluated and appended into the string.
These two devices make use of the unassigned outfix op-
erators [] and {}, and allow for a more concise method
for constructing strings in Scheme. We call this quasi-
string notation4

For example, using quasi-string notation we can write

(define (captioned-image C I)
{<table border=5>

<tr><td>

</td></tr>
<tr><td>[C]

</td></tr> </table>})

which is equivalent to the following (less elegant) stan-
dard Scheme expression:

(define (captioned-image C I)
(string-append
"<table border=5>

<tr><td>

</td></tr>
<tr><td>" C "
</td></tr> </table>"))

The quasi-string notation is similar to the quasiquote/unquote
syntax used to construct s-expressions in Scheme.

4The quasi-string notation is a syntactic variant on Bruce R
Lewis’ Beautiful Report Language (BRL) Syntax. Our approach
is based on the quasiquote/unquote approach for constructing
lists in Scheme.

www.manaraa.com

SYNTACTIC CONSTRUCT JAVA MEMBER EXAMPLE
"." at the end constructor (Font. NAME STYLE SIZE)
"." at the beginning instance method (.setFont COMP FONT)
"." at beginning, "$" at end instance field (.first$ ’(1 2))
"." only in the middle static method (Math.round 123.456)
".class" suffix Java class Font.class
"$" at end, no "." at beg. static field Font.BOLD$
"$" in the middle inner class java.awt.geom.Point2D$Double.class
"$" at the beginning packageless class $ParseDemo.class

Figure 1: Java reflectors in Jscheme

5.1 Dynamic content

The first simple, non-trivial examples of servlets that
we provide are servlets that include runtime generated
data (such as the current date, or information from
the HTML headers, like the client operating system).
For example, by enclosing their HTML in curly braces,
changing the extension from html to servlet, they can
add this dynamic content to their page just by including
the [(java.util.Date.)] expression into their HTML.

{<html>
<head><title>Date/Time</title></head>
<body>

Current local time is
[(java.util.Date.)]

</body>
</html>}

Evaluating this expression yields

<html>
<head><title>Date/Time</title></head>
<body>

Current local time is
Fri Sep 07 09:33:30 EDT 2001

</body>
</html>

These small syntactic changes provide a gentle intro-
duction to servlets that, as we will show below, leads
naturally to abstraction, conditional execution, and ex-
pression evaluation.

Scheme servlets interact with the Tomcat environment
through three Java servlet variables: request, response,
httpservlet, (which are allowed to appear free in the
quasi-string code). The request variable is used to get
the HTTP headers For example, to get the client’s op-
erating system type (from the header) we can use

[(.getHeader request "UA-OS")]

The response variable is used to set the MIME type
(e.g. to return text/plain instead of HTML and to
redirect the page, We can set MIME-type to an image
type and redirect to an image as follows:

(.setContentType response "image/gif")
(.sendRedirect response "images/picture.gif")

The httpservlet variable can be used to get informa-
tion about the scheme servlet (this is not often used by
students, but is useful for experts).

5.2 Introducing Abstraction

Once the idea of dynamic content is clearly established,
we move on to abstraction and show how to use the
”define” form to create ”scheme tags.” This simple and
powerful idea only requires an understanding of the sub-
stitution model of scheme evaluation, and yet allows
students to start writing and sharing new HTML tag li-
braries, written in Scheme. For example, Figure 2 shows
a typical and simple library that includes a generic web-
page procedure and a captioned image procedure.

;; mylib.scm
(define (captioned-image C I)
{<table border=5>

<tr><td>

</td></tr>
<tr><td>[C]

</td></tr> </table>})

(define (generic-page Title CSS Body)
{<html>

<head><title> [Title]</title>
<style type="text/css" media="screen">

<!-- [CSS] --></style></head>
<body> [Body]</body>

</html>})

Figure 2: An HTML abstraction library

An example of the use of this simple library is shown

www.manaraa.com

in Figure 3 The benefits of this sort of abstraction be-
come even greater when the abstractions start using so-
phisticated inline-CSS style attributes to create a highly
stylized HTML components.

(begin
(load "webapps/user/tim/mylib.scm")
(generic-page

"Demo page for ICFP talk"

"body {background:black;color:white}
h1{border: thick solid red}"

{<h1>My Pets</h1>
[(captioned-image

"Snappy and Pepper" "cats.jpg")]

[(captioned-image

"Missy" "missy.jpg")]
})

Figure 3: Using HTML abstraction libraries

This technique for abstracting HTML is well-known is
Lisp/Scheme web programming (e.g. LAML[7], BRL5)
and is similar to Server-Side Includes in JSP6 or the
publishing model of the Zope environment7.

5.3 Introducing User Interaction

The next pedagogical step is to introduce the notion of
using HTML forms to send data from the user to the
servlet.

To simplify the computational model for novice stu-
dents, Jscheme provides easy access to form parameters
using the (servlet (p1 p2 ...)) macro which
binds the variables p1,... to the strings associated
with the form parameters of the same names. This al-
lows one to easily write servlets that process form data
from webpages. This also proves to be a good time to
introduce the notion of conditional execution (using if,
cond, and case):

For example, after a week of HTML instruction we have
found that beginning students are easily able to create
HTML forms and it is then a small step to the servlet
in Figure 4 which either generates a form or generates
a response to the form, depending on whether the form
parameter has been given a value by the browser.

5http://brl.sourceforge.net
6http://java.sun.com/products/jsp
7http://www.zope.org

(servlet (password bg fg words)
(load "webapps/user/tim/mylib.scm")
(case password

((#null) ; first visit to page, make form
(generic-page {color viewer form} {}
{<h1>pw-protected color viewer</h1>
<form method=post action="demo1.servlet">
pw <input type=text name="pw"><p>
bg <input type=text name="bg"><p>
fg <input type=text name="fg"><p>
text<textarea name="words">
Enter text to view here</textarea>
<input type=submit>

</form>}))

(("cool!") ;; correct pw, process data
(generic-page "color viewer"
"body {background:[bg];color:[fg]}"
words))

(else ;; incorrect password, complain!
(generic-page "ERROR"

" body {color:red;background:black}"
{<h1>WRONG PASSWORD<h1>

Go back and try again!}))))

Figure 4: A password protected page

5.4 Expression Evaluation

The next step is to introduce numerical computation
into servlets. An example, of the type of program the
students are able to construct at this level is shown in
Figure 5 below.

This requires three new ideas:

• data types (converting strings into numbers using
Double.)

• evaluation of arithmetic s-expressions

• introduction of intermediate variables using let*

This is admittedly a big step. At this point we review
the substitution model to explain how expression evalu-
ation proceeds, and we introduce an environment model
to explain the semantics of the let* expression.

For students to be able to write this type of servlet
they need to learn to use prefix Scheme arithmetic ex-
pressions and to use the servlet and case macros.

5.5 System Interaction

We have also added a few additional primitives for writ-
ing or appending scheme terms to a file, and for reading

www.manaraa.com

(servlet (inches pounds)
(load "webapps/user/tim/mylib.scm")
(if (equal? inches #null)

;; first visit to page, create form
(generic-page {color viewer form} {}
{<h1>BMI Calculator</h1>
<form method=post action="bmi.servlet">
height:
<input type=text name="inches"> inches

weight:
<input type=text name="weight">pounds

<input type=submit>

</form>})
;; else compute BMI, display results
(let*((h (Double. inches))

(w (Double. pounds))
(h-in-m (* h 0.0254))
(w-in-kg (/ w 2.2))
(bmi (/ w-in-kg (* h-in-m h-in-m))))

(generic-page "Body Mass Index"
" body {background:rgb(255,235,215)}"
{<h1>Body Mass Index<h1>
With a height of [inches] inches and
a weight of [pounds] pounds, your
Body Mass Index is [bmi]

Note: a BMI over 25 indicates you may be
overweight, while a BMI over 30 indicates
that your weight may cause significant health
problems!}))))

Figure 5: A sample quasi-string servlet

a file either as a string or as a list of scheme terms. These
allow students to easily write logs and counters as in
Figure 6. This example also shows the send-mail pro-
cedure which allows the students to specify the ”from”,
”to”, ”subject” fields and give a quasi-string for the
body.

In order to simplify the problem of associating log and
counter files to servlets, these primitives read and write
from files whose prefix is the name of the servlet. Thus,
for the log and counters example, the ”log” file would
be named ”test.servlet log” and the counter would be
”test.servlet counter”. The students can also use library
procedures that allow absolute addresses for files, but
this is discouraged.

5.6 Data Structures and smap

Students naturally want to handle list-style data (e.g.
multiple checkboxes in form data). This leads naturally
into a description of ”map” and also to table abstrac-
tions. We find it useful to introduce map before car,
cdr, cons. Since it provides a powerful and intuitively
clear operation and does not require an understanding
of recursion. Moreover, as the examples in Figure 7 be-
low illustrate, the smap procedure (which applies string-
append to the result of map) gives the students most

(servlet()
(load "webapps/scheme/lib/cs2a.scm")
(let* ((c (read-from-file "counter" 0))

(d (list c (Date.)
(.getRemoteHost request))))

(write-to-file "counter" (+ 1 c))
(append-to-file "log" d)
(send-mail

"tjhickey@brandeis" "nobody@brandeis"
"counter" {You got a hit: [d]!})

{<html><body>
This list has been visited by <xmp>
[(read-string-from-file "log" "")</xmp>
and you are visitor number [(+ 1 c)]

Figure 6: Logs and Counters in test.servlet

of what they need to handle lists of data values. The
smap procedure uses a generalized map that also con-
verts Java collection objects into lists, and hence can be
used with arrays, hashtables, etc.

(define smap (lambda R
(apply string-append (apply map* R))))

(define (li x) {[x]})
(define (lis L) (smap li L))
(define (ul L) {[(lis L)]})
(define (ol L) {[(lis L)]})
(define (td X) {<td>[X]</td>})
(define (tds Ts) (smap tableitem Ts))
(define (tr Ts) {<tr> [(tds Ts)] </tr>})
(define (trs Rs) (smap tr Rs))
(define (table Rs) {<table> [(trs Rs)] </table>})

Figure 7: Generating lists and tables

6 Scheme Applets

After spending about three weeks studying servlets, we
turn to client-side computing. The tomcat server has
been configured so that any scheme program that ends
with ”.applet” is transformed into a Jscheme applet
and runs on the client’s browser. Likewise, Jscheme
programs that end in ”snlp” are converted into Java
Network Protocol format which will be automatically
downloaded and run in the Java Web Start plugin.8.

Jscheme has also been extended to allow students to
learn to implement simple programs with Graphical User
Interfaces. We have written a library, JLIB, that pro-
vides declarative access to the AWT package (There is
also a version for the Swing package). An example of a
simple Scheme program using this library is shown be-
low in Figure 8. The first five lines of the program listed
above are strings that provide documentation about this

8http://java.sun.com/products/javawebstart

www.manaraa.com

"John Doe"
"http://www.johndoe.com"
"years->secs calculator"
"Convert age in years to age in seconds"
"http://www.johndoe.com/jd.gif"

(jlib.JLIB.load)
(define t (maketagger))
(define w (window "years->secs"

(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide w))))))

(border
(north (label "Years->Seconds Calculator"

(HelveticaBold 60)))
(center
(table 3 2
(label "Years:")
(t "years" (textfield "" 20))

(label "Seconds:")
(t "secs" (label ""))

(button "Compute" (action(lambda(e)
(let*

((y (readexpr (t "years")))
(s (* 365.25 24 60 60 y)))

(writeexpr (t "secs") s))))))))))
(.pack w)
(.show w)

Figure 8: A sample SNLP program

program which is required by the Java Network Launch-
ing Protocol (JNLP).

6.1 JLIB

The JLIB model is based on five fundamental concepts:

• COMPONENTS – there are a small number of
ways to construct basic components (buttons, win-
dows, ...)

• LAYOUTS – there are a small number of ways to
layout basic components (row, col, table, grid, ...)

• ACTIONS – there is a simple mechanisms for as-
sociating an action to a component

• PROPERTIES – there are easy ways for setting
the font and color of components

• TAGS – this is a mechanism for giving names to
components while they are being laid out.

Another key idea is that operations on all components
should be as uniform as possible. For example, there are

procedures ”readstring” and ”writestring” which allow
one to read a ”string” from a component, and write
a string onto a component. Thus ”writestring” can
change the string on a label, a button, a textfield, a
textarea. It can also change the title of a window or add
an item to a choice component. Likewise, readstring re-
turns the label of a button, the text in a textarea or
textfield, the text of the currently selected item in a
choice, the title of a window, and the text of a label.

JLIB provides procedures for each of the main GUI wid-
gets (window, button, menubar, label) and it also pro-
vides procedures for specifying layouts (e.g. border, cen-
ter, row, col, table). The first few arguments of these
procedures are mandatory (e.g. window must have a
string argument, textfield requires a string and a inte-
ger number of columns). The remaining arguments are
optional and can appear in any order. Examples are
fonts, background colors, and actions.

The JLIB package provides a “tagger” procedure which
allows one to give names to components in situ

• (define t (maketagger)) creates a tagger,

• (t NAME OBJ) assigns the NAME to the OBJ and

• (t NAME) looks up the OBJ with that NAME.

We have found that this makes the code more declar-
ative in that the name for a textfield appears with the
constructor for the textfield in the expression that cre-
ates the GUI.

6.2 Graphics and Animation

We also provide a simple graphics library providing ac-
cess to a canvas with an offscreen buffer. The drawing
primitives are the Java primitives from the java.awt.Graphics
class. The ”canvas” procedure is a JLIB procedure that
creates a canvas with an offscreen buffer accessed by
(.bufferg$ c) and which can be drawn to the screen
using (.repaint c). The program in Figure 9 shows a
simple example drawing a red ball moving across a blue
background.

The run-it procedure is used when the students write
animations. They seem to understand the notion of
multi-threaded programming in the context of having
several animations each running in their own thread 9

9We also have a version of run-it that looks for errors and
reports them in a debugging window.

www.manaraa.com

(jlib.JLIB.load)
(define c (canvas 400 400))
(define w (window "graphics1"
(border

(center c)
(south

(button "draw"
(action (lambda(e)
(run-it drawballs))))))))

(define (run-it F) (.start (Thread. F)))

(define (drawballs) (drawball 200))

(define (drawball N)
(define g (.bufferg$ c)) ;get graphics object
(.setColor g blue)
(.fillRect g 0 0 1000 1000) ;; clear background
(.setColor g red)
(.fillOval g N N 100 100) ;draw red disk
(.repaint c) ; copy buffer to screen
(Thread.sleep 100L) ;; pause 0.1 sec
(if (> N 0) (drawball (- N 1))) ;; loop
)

(.resize w 400 400)
(.show w)

Figure 9: Graphics programming

7 Networking Abstractions

After spending two weeks mastering the JLIB library we
introduce network programming using a simple model
where applets communicate by sending scheme terms to
each other through a group-server. Since applets are
only able to open sockets on their host server, we must
run the group-server on the same machine that man-
ages the students’ applets. The students connect to this
group-server using the make-group-client procedure:

(define S
(make-group-client Name Group Host Port))

This creates an object, S, that can communicate with
the group-server. To send the scheme terms key b c
... to the server, one evaluates the expression

(S ’send key . restargs)

The first term, key, is used as a filter. Indeed, the group-
server bounces back every message it receives to all the
members of the group. A member can specify how to
handle a message using the add-listener method

(S ’add-listener key
(lambda (key . restargs) ...))

This method indicates that the indicated procedure should
be called on each message that arrives from the server
with the specified key.

This model builds on the student’s experience with call-
backs in GUI’s and with reading/writing on GUI com-
ponents. The analogy is that ”send” is like writing to a
component and ”add-listener” is like adding an action.

An example of the kind of applet that is explained in
class is the chat applet shown in Figure 10. In the most
recent semester we did not require students to write an
applet using networked communication, but several stu-
dents chose to write such applets for their final project.
The best example was a pictionary program which al-
lowed any number of students to join in a game of pic-
tionary. using a shared whiteboard as well as private
and group chats. This program was written by a student
with no previous programming experience and made use
of almost all of the examples we had given previously in
the course.

(jlib.JLIB.load)
(jlib.Networking.load)
(define (chatwin

UserName ChatGroup Host Port)
(define t (maketagger))
(define S (make-group-client

UserName ChatGroup Host Port))
(define w (window "test"

(col
(button "quit" (action (lambda (e)

(S ’logout) (.hide w))))
(t "chatarea" (textarea 20 50))
(t "chatline" (textfield "" 50
(action (lambda(e)
(S ’send "chat" (string-append

UserName ": "
(readstring (t "chatline"))))

(writeexpr (t "chatline") "")
)))))))

(S ’add-listener "chat" (lambda R
(appendlnexpr (t "chatarea") R)))
(.pack w) (.show w)
w)

(define (rand N)
(Math.round (* N (Math.random))))

(chatwin
(string-append "user-" (rand 1000))
"chat"
(.getHost (.getDocumentBase thisApplet))
23456)

Figure 10: A multi-room chat program

In the coming year we plan on introducing networked
communication using the notion of groupware compo-
nents. These are textareas and canvases which are shared
among several users on the network. This approach may
provide an even simpler model of network programming
that builds more directly on their understanding of GUI
programs.

www.manaraa.com

8 Experience

We have used Jscheme and its predecessors to teach
a large Introduction to Computers course for the past
five years. The classes have ranged in size from 150-250
students whose majors are evenly distributed across the
liberal arts departments.

We have used several techniques to accommodate the
non-science students that are a majority in this class.
The homework assignments allow students to exercise
their creativity in creating a web artifact (webpage,
servlet, applet, application) which must meet some gen-
eral criteria. For example, in one assignment they are
required to create a servlet that uses several specific
form tags (in HTML) and generates a webpage in which
some arithmetic computation is performed. This en-
courages a bricolage approach to learning programming
concepts which seems to appeal to non-science majors.

The course features weekly quizzes which take an oppo-
site approach. The students are shown a simple web ar-
tifact and asked to write the code for it during a twenty
minute in-class exam. This practice helps keep the stu-
dents from falling behind in the class and also helps
counterbalance the openness of the homework assign-
ments.

The final exam is based on the weekly quizzes so they
also serve a role in preparing students for the exam.
The course provides a high level of teaching assistant
support and uses peers who have completed the course
in a previous year. The students post their homework
assignments on the web and are thereby able to learn
from each other, while the creativity requirement and
the sheer joy of creating keeps copying to a minimum.

9 Conclusions/Future Work

Overall the most surprising aspect of the course is that
these non-science students have been able to learn how
to write servlets, applets, and applications in Scheme
all within a 6 week unit of a 13 week semester. The
primary reasons for the success of this approach seems
to be two-fold:

• by using a subset of Scheme we eliminate the prob-
lem of learning complicated syntax (as one must
only match parens (of various sorts) and quotes
and the Jscheme IDEs help one do this) and also
minimize the problem of learning the underlying
abstract machine due to the declarative nature of
the language.

• by using a Scheme implemented in Java we are
able to easily embed Scheme in applets, servlets,
and JNLP applications and thereby allow the stu-
dents to develop web artifacts that are usually

only accessible to upper level Computer Science
majors. (Much of this could be done with non-
Java schemes, but would require custom plug-ins,
web-servers, etc.)

We have also found that Scheme provides an ideal ve-
hicle for introducing key CS concepts such as formal
syntax and semantics (e.g. students are introduced to
the substitution model of Scheme and given quizzes in
which they must trace the evolution of a Scheme pro-
cess).

Another advantage of Jscheme is that it is quite easy
to implement declarative libraries providing access to
Java packages (e.g. the Swing library is only a few
pages of code, as is the code for implementing applets
and servlets, and for accessing databases, email, and file
I/O).

We are experimenting with using this curriculum to
teach computer science concepts in a transitional year
program whose aim is to prepare high-potential students
from under-resourced high schools for admission to Ivy
League universities.

The Jscheme approach could still be improved. Many
of the non-science students find the process of writing a
program by themselves to be an isolating and frustrat-
ing experience. We are looking into introducing online
Pair programming as a required part of the course and
we have been developing some peer-to-peer tools which
will allow student to get online support for Teaching As-
sistants. These groupware tools are written, of course,
in Jscheme as is all of the course management software.

Acknowledgment

I would like to acknowledge the support of the steadily
growing Jscheme community, including my co-developers
Ken Anderson and Peter Norvig, and my students Hao
Xu, Lei Wang who helped develop the very first version
in 1997. Finally, I’d like to thank the 1000+ students
who have explored the possibilities of Scheme applets
and servlets with me in various introductory classes over
the past five years.

References

[1] H. Abelson and J. Sussman. Structure and Inter-
pretation of Computer Programs MIT Press.

[2] Kenneth R. Anderson, Timothy J. Hickey, Peter
Norvig “Silk: A Playful Combination of Scheme
and Java” Proceedings of the Workshop on Scheme
and Function Programming Rice University, CS
Dept. Technical Report 00-368, September 2000.

www.manaraa.com

[3] Ken Anderson and Timothy J. Hickey, “Reflecting
Java into Scheme” Proceedings of Reflection 99,
Springer-Verlag, Lecture Notes in Computer Sci-
ence, v. 1616, 1999.

[4] William Clinger and Jonathan Rees, editors.
“The revised4 report on the algorithmic language
Scheme.” In ACM Lisp Pointers 4(3), pp. 1-55,
1991

[5] Robert Bruce Findler, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. DrScheme: a pedagogic programming en-
vironment for Scheme. Proc. 1997 Symposium on
Programming Languages: Implementations, Log-
ics, and Programs, 1997.

[6] Timothy J. Hickey, Peter Norvig, and Ken Ander-
son “LISP - a Language for Internet Scripting and
Programming”, (.ps.gz 130K) in LUGM’98: Pro-
ceedings of Lisp in the Mainstream, Nov. 1998,
Berkeley, CA.

[7] Kurt Normark, “Programming World Wide Web
pages in Scheme” Sigplan Notices, vol. 34, no. 12,
1999.

[8] Eric Roberts. An overview of MiniJava. in
SIGCSE’00 ACM Digital Library, 2000.

[9] David Reed. Rethinking CS0 with Javascript. in
SIGCSE’00 ACM Digital Library, 2000.

